Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 794
Filtrar
1.
Mol Cancer ; 23(1): 38, 2024 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378555

RESUMO

Most soft-tissue sarcomas (STS) exhibit an immunosuppressive tumor microenvironment (TME), leading to resistance against immune checkpoint inhibitors (ICIs) and limited therapeutic response. Preclinical data suggest that oncolytic viral therapy can remodel the TME, facilitating T cell accumulation and enhancing the immunogenicity of these tumors.We conducted the METROMAJX, a phase II clinical trial, to investigate the combination of JX-594, an oncolytic vaccinia virus engineered for selective tumor cell replication, with metronomic cyclophosphamide and the PD-L1 inhibitor avelumab in patients with advanced, 'cold' STS, characterized by an absence of tertiary lymphoid structures. The trial employed a two-stage Simon design. JX-594 was administered intratumorally at a dose of 1.109 pfu every 2 weeks for up to 4 intra-tumoral administrations. Cyclophosphamide was given orally at 50 mg twice daily in a week-on, week-off schedule, and avelumab was administered at 10 mg/kg biweekly. The primary endpoint was the 6-month non-progression rate.Fifteen patients were enrolled, with the most frequent toxicities being grade 1 fatigue and fever. Fourteen patients were assessable for efficacy analysis. At 6 months, only one patient remained progression-free, indicating that the trial did not meet the first stage endpoint of Simon's design. Analysis of sequential tissue biopsies and plasma samples revealed an increase in CD8 density and upregulation of immune-related protein biomarkers, including CXCL10.Intra-tumoral administration of JX-594 in combination with cyclophosphamide and avelumab is safe and capable of modulating the TME in cold STS. However, the limited efficacy observed warrants further research to define the therapeutic potential of oncolytic viruses, particularly in relation to specific histological subtypes of STS.


Assuntos
Anticorpos Monoclonais Humanizados , Terapia Viral Oncolítica , Vírus Oncolíticos , Sarcoma , Humanos , Microambiente Tumoral , Terapia Viral Oncolítica/efeitos adversos , Vírus Oncolíticos/genética , Vírus Oncolíticos/metabolismo , Sarcoma/terapia , Ciclofosfamida/uso terapêutico , Ciclofosfamida/metabolismo
2.
Int Heart J ; 64(5): 935-944, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37778997

RESUMO

A certain dosage of cyclophosphamide (CYP) in clinical applications contributes to severe cardiotoxicity. Herein, this study explored the impact of adipose-derived mesenchymal stem cell (AdMSC)-exosomes (Exos) on CYP-induced cardiotoxicity.AdMSCs and AdMSCs-Exos were isolated and identified. CYP was utilized for developing a cardiotoxicity rat model, after which blood was collected and then the serum contents of cardiac injury-related indexes (creatine kinase-MB, lactate dehydrogenase, aspartate aminotransferase, and alkaline phosphatase) were detected with enzyme-linked immunosorbent assay kits. Oxidative stress (OS)-related indicators were measured with the corresponding kits. Myocardial pathological changes and collagen fibrosis were tested with hematoxylin-eosin and Masson staining, and apoptosis-related and autophagy-related proteins in rat cardiac tissues with immunohistochemistry and Western blot assays, respectively.AdMSCs and AdMSCs-Exos were successfully isolated. AdMSCs-Exos could target rat hearts. AdMSCs-Exos improved cardiac function and diminished the content of the cardiac injury-related indexes in CYP rats. In addition, AdMSCs-Exos reduced CYP-induced cardiac fibrosis, OS, apoptosis, and autophagy in rats.AdMSCs-Exos alleviated CYP-induced cardiotoxicity in rats via the repression of OS, apoptosis, and autophagy.


Assuntos
Exossomos , Células-Tronco Mesenquimais , Ratos , Animais , Cardiotoxicidade/etiologia , Cardiotoxicidade/prevenção & controle , Exossomos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Apoptose , Ciclofosfamida/toxicidade , Ciclofosfamida/metabolismo
3.
Cell Commun Signal ; 21(1): 188, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37528446

RESUMO

BACKGROUND: Targeting influential factors in resistance to chemotherapy is one way to increase the effectiveness of chemotherapeutics. The nuclear factor erythroid 2-related factor 2 (Nrf2) pathway overexpresses in chronic lymphocytic leukemia (CLL) cells and appears to have a significant part in their survival and chemotherapy resistance. Here we produced novel nanoparticles (NPs) specific for CD20-expressing CLL cells with simultaneous anti-Nrf2 and cytotoxic properties. METHODS: Chitosan lactate (CL) was used to produce the primary NPs which were then respectively loaded with rituximab (RTX), anti-Nrf2 Small interfering RNA (siRNAs) and Cyclophosphamide (CP) to prepare the final version of the NPs (NP-Nrf2_siRNA-CP). All interventions were done on both peripheral blood mononuclear cells (PBMCs) and bone marrow mononuclear cells (BMNCs). RESULTS: NP-Nrf2_siRNA-CP had satisfying physicochemical properties, showed controlled anti-Nrf2 siRNA/CP release, and were efficiently transfected into CLL primary cells (both PBMCs and BMNCs). NP-Nrf2_siRNA-CP were significantly capable of cell apoptosis induction and proliferation prevention marked by respectively decreased and increased anti-apoptotic and pro-apoptotic factors. Furthermore, use of anti-Nrf2 siRNA was corresponding to elevated sensitivity of CLL cells to CP. CONCLUSION: Our findings imply that the combination therapy of malignant CLL cells with RTX, CP and anti-Nrf2 siRNA is a novel and efficient therapeutic strategy that was capable of destroying malignant cells. Furthermore, the use of NPs as a multiple drug delivery method showed fulfilling properties; however, the need for further future studies is undeniable. Video Abstract.


Assuntos
Leucemia Linfocítica Crônica de Células B , Nanopartículas , Humanos , Rituximab/farmacologia , Rituximab/metabolismo , Rituximab/uso terapêutico , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/metabolismo , Leucócitos Mononucleares/metabolismo , Ciclofosfamida/farmacologia , Ciclofosfamida/uso terapêutico , Ciclofosfamida/metabolismo , RNA Interferente Pequeno/metabolismo
4.
Neurotoxicology ; 98: 16-28, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37419146

RESUMO

Quercetin (Qu) is a powerful flavanol antioxidant that is naturally found in plants and is part of the flavonoid family. Qu has a wide range of biological properties, such as neuroprotective, anti-cancer, anti-diabetic, anti-inflammatory, and radical scavenging capabilities. However, the in vivo application of Qu is limited by its poor water solubility and low bioavailability. These issues could be addressed by utilizing Qu nanoformulations. Cyclophosphamide (CP) is a potent chemotherapeutic agent that causes severe neuronal damage and cognitive impairment due to reactive oxygen species (ROS) overproduction. The present study aimed to explore the proposed neuroprotective mechanism of quercetin (Qu) and quercetin-loaded Chitosan nanoparticles (Qu-Ch NPs) against the brain oxidative damage induced by CP in male albino rats. For this aim, thirty-six adult male rats were randomly divided into six groups (n = 6). Rats were pretreated with Qu and Qu-Ch NPs orally in doses of 10 mg/kg bwt/day for 2 weeks, and CP (75 mg/kg bwt) was administered intraperitoneally 24 h before the termination of the experiment. After 2 weeks, some neurobehavioral parameters were evaluated, and then euthanization was done to collect the brain and blood samples. Results showed that CP induces neurobehavioral deteriorations and impaired brain neurochemical status demonstrated by a significant decrease in brain glutathione (GSH), serum total antioxidant capacity (TAC), and serotonin (5-HT) levels while malondialdehyde (MDA), nitric oxide (NO), Tumor necrosis factor α (TNFα), and choline esterase (ChE) concentrations increased significantly compared to the control group. Pretreatment with Qu and Qu-Ch NPs showed a significant anti-oxidative, anti-depressive, and neuroprotective effect through modification of the above-mentioned parameters. The results were further validated by assessing the expression levels of selected genes in brain homogenates and histopathological investigations were done to pinpoint the exact brain-altered regions. It could be concluded that Qu and Qu-Ch NPs can be useful neuroprotective adjunct therapy to overcome neurochemical damage induced by CP.


Assuntos
Fármacos Neuroprotetores , Quercetina , Ratos , Animais , Quercetina/farmacologia , Antioxidantes/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Ciclofosfamida/toxicidade , Ciclofosfamida/metabolismo , Transdução de Sinais , Anti-Inflamatórios/farmacologia , Encéfalo
5.
J Reprod Immunol ; 158: 103971, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37329866

RESUMO

OBJECTIVE: Stem cell/exosome therapy is a novel strategy for primary ovarian insufficiency (POI). This paper is to examine the role of human umbilical cord mesenchymal stem cell-derived extracellular vesicles (hUCMSC-EVs) in POI. METHODS: hUCMSC-EVs were extracted and identified. POI rats were induced by cyclophosphamide for 15 days and treated with EV or GW4869 every 5 days and euthanized 28 days later. Vaginal smears were observed for 21 days. Serum hormone levels (FSH/E2/AMH) were measured by ELISA. Ovarian morphology, follicle numbers, and granulosa cell (GC) apoptosis were observed by HE and TUNEL staining. GCs extracted from Swiss albino rats were cyclophosphamide-induced to establish the POI cell model, followed by oxidative injury and apoptosis evaluation with the help of DCF-DA fluorescence, ELISA, and flow cytometry. The relation between miR-145-5p and XBP1 was predicted on StarBase and validated by dual-luciferase assay. miR-145-5p and XBP1 levels were measured by RT-qPCR and Western blot. RESULTS: EV treatment reduced irregular estrus cycle incidence since day 7, increased E2 and AMH levels and all-stage follicle numbers, reduced FSH level, GC apoptosis, and atretic follicle numbers in POI rats. EV treatment diminished GC oxidative injury and apoptosis in vitro. miR-145-5p knockdown in hUCMSC-EVs partly abolished hUCMSC-EV-mediated effects on GCs and ovarian function in vivo and on GC oxidative injury and apoptosis in vitro. Silencing XBP1 partially negated miR-145-5p knockdown-exerted effects on GCs in vitro. CONCLUSION: miR-145-5p carried by hUCMSC-EVs attenuates GC oxidative injury and apoptosis and thus extenuates ovarian injury and improves ovarian function in POI rats.


Assuntos
Exossomos , Células-Tronco Mesenquimais , MicroRNAs , Insuficiência Ovariana Primária , Feminino , Ratos , Humanos , Animais , Insuficiência Ovariana Primária/terapia , Ciclofosfamida/efeitos adversos , Ciclofosfamida/metabolismo , Exossomos/metabolismo , Cordão Umbilical/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Células-Tronco Mesenquimais/metabolismo , Hormônio Foliculoestimulante
6.
Physiol Int ; 110(2): 108-120, 2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37256739

RESUMO

Background: The liver and kidney are organs affected by chemotherapy drugs such as cyclophosphamide (CP). This study examined the protective effects of treatment with saponin (SP) against CP-induced nephrotoxicity and hepatotoxicity. Methods: 24 adult male mice were divided into four groups (N = 6): Control group, CP (15 mg kg-1), SP (2.5 mg kg-1) and CP + SP. After treatment, blood samples were collected for the determination of biochemical parameters. Liver and kidney samples were taken for histological analysis and assessment of oxidative stress and inflammatory markers. Results: Cyclophosphamide decreased renal and liver functions and antioxidant enzymes, which significantly increased blood urea nitrogen and creatinine (BUN, Cr), liver enzyme levels, malondialdehyde, nuclear factor kappa ß (NF-kB) and Interleukin 1 beta (IL-1B) concentrations. Moreover, histopathological findings of the CP group showed that there were acute tubular necrosis and glomerular atrophy in the renal tissues and lymphocyte infiltration in the liver samples. Treatment with saponin improved hepatic and renal functions, pathological changes and antioxidant capacity, and also decreased lipid peroxidation and inflammation. Conclusion: It seems that saponin could exert a hepato-nephroprotective effect against cyclophosphamide toxicity.


Assuntos
Antioxidantes , Rim , Masculino , Camundongos , Animais , Antioxidantes/farmacologia , Rim/patologia , Ciclofosfamida/metabolismo , Ciclofosfamida/farmacologia , Estresse Oxidativo , Fígado , Anti-Inflamatórios/farmacologia
7.
J Reprod Immunol ; 157: 103950, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37079974

RESUMO

There is growing evidence to suggest that scaffold of tissue can promote the tissue reparation. In this study, we investigate the effects of ovarian scaffolds on the reparation of cyclophosphamide (CPA) damaged mice ovaries. The mice were first administered with CPA, was then either transplanted an ovarian scaffold into each ovarian bursa for the experimental group (EG) or underwent sham surgery as the control (CG). To evaluate the extent of ovarian damage caused by CPA, a third group which did not undergo any treatment was included for the normal control (NG). Their ovaries were harvested for examination at day 30, 60, and 90 post CPA injection. We found that in EG, the number of all types of follicles in the ovaries remained almost the same throughout. The numbers of follicles were not significantly different from CG, except at day 60, where in CG the numbers of each type of follicle decreased to basal levels. The decrease in the number of ovarian follicles at day 60 in CG was mirrored by the significant increase in the number of apoptotic granulosa cells in the follicles, and was corroborated further by the basal levels of serum estradiol. Furthermore, we observed a significant decrease in collagen composition preceded by macrophage polarization, and elevation of inflammatory cytokine expression in the ovaries of the EG compared to the CG at day 60. We concluded that ovarian scaffolds can effectively protect primordial follicles from CPA-damage and promote the reparation of CPA-damaged ovaries. This research establishes a proof of concept for the future treatment of chemo-damaged ovaries.


Assuntos
Folículo Ovariano , Ovário , Feminino , Camundongos , Animais , Ovário/metabolismo , Ciclofosfamida/metabolismo , Ciclofosfamida/farmacologia , Folículo Ovariano/metabolismo , Células da Granulosa/metabolismo
8.
Environ Sci Process Impacts ; 25(4): 870-884, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37010127

RESUMO

Cyclophosphamide (CP) is widely used for treating various kinds of cancer. Because of its high intake, metabolism and excretion, these anticancer medications have been detected in the aquatic environment. There is very limited data on the toxicity and effects of CP on aquatic organisms. The present study aims to assess the toxic effect of CP on certain oxidative stress biomarkers (superoxide dismutase-SOD, catalase-CAT, glutathione peroxidase-GPx, glutathione-GSH, glutathione S-transferases-GST and lipid peroxidation-LPO), protein, glucose, metabolising enzymes (aspartate aminotransferase-AST, alanine aminotransferase-ALT), and ion-regulatory markers (sodium ions-Na+, potassium ions-K+, and chloride ions-Cl-), and histology in the gills and liver of Danio rerio at environmentally relevant concentrations (10, 100 and 1000 ng L-1). Exposure to CP for 42 days led to a significant decrease in SOD, CAT, GST, GPx and GSH levels in the gills and liver tissues of zebrafish. The level of lipid peroxidation in the gills and liver tissues of zebrafish was significantly increased compared to the control group. Chronic exposure significantly changes protein, glucose, AST, ALT, Na+, K+ and Cl- biomarkers. Fish exposed to different levels of CP showed necrosis, inflammation, degeneration and hemorrhage in the gills and hepatic tissues. The observed changes in the studied tissue biomarkers were proportional to both dose and time. In conclusion, CP at environmentally relevant concentrations causes oxidative stress, energy demand, homeostasis disturbances, and enzyme and histological alterations in the vital tissues of zebrafish. These alterations were similar to the toxic effects reported in mammalian models.


Assuntos
Antineoplásicos , Poluentes Químicos da Água , Animais , Peixe-Zebra/metabolismo , Glutationa Transferase/metabolismo , Glutationa Transferase/farmacologia , Estresse Oxidativo , Catalase/metabolismo , Catalase/farmacologia , Glutationa/metabolismo , Superóxido Dismutase/metabolismo , Superóxido Dismutase/farmacologia , Ciclofosfamida/toxicidade , Ciclofosfamida/metabolismo , Fígado/metabolismo , Antineoplásicos/toxicidade , Antineoplásicos/metabolismo , Biomarcadores/metabolismo , Peroxidação de Lipídeos , Brânquias , Poluentes Químicos da Água/metabolismo , Mamíferos/metabolismo
9.
Comb Chem High Throughput Screen ; 26(13): 2393-2400, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36852800

RESUMO

OBJECTIVE: This study aimed to investigate the therapeutic effect of Specnuezhenide on myelosuppression induced by chemotherapy and clarify its mechanism. METHODS: In this study, we measured peripheral blood cells, thymus index, spleen index, bone marrow nucleated cells (BMNCs), and the number of cell colonies counted in vitro by hematopoietic progenitor cells (HPCs) to determine the effect of SPN on cyclophosphamide (CTX)-induced myelosuppression. The alterations in the expression of relevant proteins, the cell cycle, and cytokines associated with hematopoietic cells were examined to better understand how it works. RESULTS: In the cyclophosphamide-induced mouse model, our study discovered that SPN can increase the number of peripheral blood cells and BMNCs after treatment, increase the thymus index and decrease the spleen index, and promote the proliferation and differentiation of HPCs. SPN can improve the production of cultured colonies in vitro, reduce the level of hematopoietic factors in vivo, regulate the proportion of G0/G1 phase cells, and promote the normal growth and development of cells. SPN can increase the expression levels of key proteins MEK and p-ERK in the MAPK signaling pathway, which may be one of the important mechanisms for improving myelosuppression. CONCLUSION: SPN can enhance the hematological and immunological functions of myelosuppressionmice, and it is hypothesized that SPN is extremely helpful to the hematopoietic and immune functions of tumor patients following chemotherapy. SPN might be used to treat myelosuppression. Additionally, high doses of SPN have a stronger therapeutic effect than low levels of SPN.


Assuntos
Antineoplásicos , Células-Tronco Hematopoéticas , Camundongos , Animais , Ciclofosfamida/efeitos adversos , Ciclofosfamida/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Glucosídeos/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/metabolismo
10.
Exp Biol Med (Maywood) ; 248(2): 157-164, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36598044

RESUMO

Phenethyl isothiocyanate (PEITC), a secondary metabolite in Cruciferous plants, exerts chemopreventive and antioxidant effects. However, its therapeutic potential in cyclophosphamide (CP)-induced nephrotoxicity is not clear. So, we focused to research on the effect of PEITC against renal toxicity caused by CP and its relationship to the Nrf2 signaling mechanism. Thirty female Wistar albino rats were allocated to three groups: control (n = 10), CP (n = 10), and PEITC-pretreated group (150 µmol/kg b.w. orally; n = 10). The antioxidant enzyme activities and levels of malondialdehyde (MDA), sirtuin 1 (SIRT1), glutathione-S-transferase (GST), nuclear factor E2-related factor 2 (Nrf2), nuclear factor kappa B (NF-κB), serum urea, and creatinine (Cr) were measured. In the CP group, serum urea and Cr, MDA, and NF-κB levels have risen, and the activities of antioxidant enzymes and SIRT1, Nrf2, and GST levels have reduced significantly (P < 0.05). PEITC diminished levels of Cr, urea, MDA, and NF-κB while it enhanced antioxidant enzyme activities and GST, Nrf2, and SIRT1 levels significantly (P < 0.05). Pretreatment with PEITC ameliorated kidney tissue injury. The renal protective effect of the PEITC was supported by the histological analysis of the kidney. PEITC prevented CP-induced nephrotoxicity by decreasing oxidative damage through Nrf2 and SIRT1 activation and NF-κB inhibition. Therefore, we have suggested that PEITC may be a useful agent for protection against CP-induced renal injury.


Assuntos
Fator 2 Relacionado a NF-E2 , NF-kappa B , Animais , Ratos , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Antioxidantes/farmacologia , Sirtuína 1/metabolismo , Ratos Wistar , Ciclofosfamida/toxicidade , Ciclofosfamida/metabolismo , Rim/metabolismo , Estresse Oxidativo
11.
Arch Gynecol Obstet ; 307(4): 1163-1176, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36166083

RESUMO

PURPOSE: It is unknown if future fertility is compromised by the administration of chemotherapy during pregnancy. The aim of this study was to identify if chemotherapy affects the maternal ovaries during pregnancy and whether these effects depend on type of chemotherapy and duration of exposure. METHODS: Pregnant 8-week-old female BL6 mice were exposed to 6 different single chemotherapeutic agents (carboplatin, cisplatin, paclitaxel, epirubicin, doxorubicin, or cyclophosphamide) or saline at gestational day (GD) 13.5. The mice were sacrificed at GD 15.5 or GD 18.5. Ovaries were assessed by histopathology and immunohistochemistry. Follicle count was determined per follicle stage and per treatment modality. RESULTS: Maternal ovarian damage was demonstrated by the presence of apoptosis and necrosis in preantral follicles. The extent of this damage depends upon type of chemotherapy and duration of exposure (2 or 5 days). After short exposure, 81% of ovaries showed histopathologic signs of damage compared to 36% after long exposure, which might suggest a transient effect. Loss of primordial follicles (PMFs) was observed after both short and long exposure, with a reduction of more than 70%. Evidence of DNA damage, as demonstrated by phospho-H2AX expression, was present in 23% (range 0-89%) of PMFs exposed to chemotherapy, but only in the short exposure group. Overall, the least damage was seen after administration of paclitaxel. CONCLUSION: Despite physiological ovarian function suppression during gestation, chemotherapy-induced damage of the ovaries occurs in pregnant mouse models, potentially affecting future fertility.


Assuntos
Folículo Ovariano , Ovário , Gravidez , Camundongos , Feminino , Animais , Ciclofosfamida/efeitos adversos , Ciclofosfamida/metabolismo , Cisplatino/efeitos adversos , Paclitaxel/efeitos adversos
12.
Cell Rep ; 41(13): 111874, 2022 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-36577370

RESUMO

While chemotherapy remains the first-line treatment for many cancers, it is still unclear what distinguishes responders from non-responders. Here, we characterize the chemotherapy-responsive tumor microenvironment in mice, using RNA sequencing on tumors before and after cyclophosphamide, and compare the gene expression profiles of responders with progressors. Responsive tumors have an inflammatory and highly immune infiltrated pre-treatment tumor microenvironment characterized by the enrichment of pathways associated with CD4+ T cells, interferons (IFNs), and tumor necrosis factor alpha (TNF-α). The same gene expression profile is associated with response to cyclophosphamide-based chemotherapy in patients with breast cancer. Finally, we demonstrate that tumors can be sensitized to cyclophosphamide and 5-FU chemotherapy by pre-treatment with recombinant TNF-α, IFNγ, and poly(I:C). Thus, a CD4+ T cell-inflamed pre-treatment tumor microenvironment is necessary for response to chemotherapy, and this state can be therapeutically attained by targeted immunotherapy.


Assuntos
Neoplasias , Linfócitos T , Animais , Camundongos , Fator de Necrose Tumoral alfa/metabolismo , Microambiente Tumoral , Ciclofosfamida/farmacologia , Ciclofosfamida/uso terapêutico , Ciclofosfamida/metabolismo , Neoplasias/patologia , Linfócitos T CD4-Positivos/metabolismo
13.
Sci Adv ; 8(51): eade1846, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36542718

RESUMO

Cyclophosphamide and doxorubicin lead to premature ovarian insufficiency as an off-target effect. However, their oocyte death pathway has been debated. Here, we clarified the precise mechanism of ovarian depletion induced by cyclophosphamide and doxorubicin. Dormant oocytes instead of activated oocytes with high PI3K activity were more sensitive to cyclophosphamide. Checkpoint kinase 2 (CHK2) inhibitor rather than GNF2 protected oocytes from cyclophosphamide and doxorubicin, as cyclophosphamide up-regulated p-CHK2 and depleted primordial follicles in Abl1 knockout mice. Contrary to previous reports, TAp63 is pivotal in cyclophosphamide and doxorubicin-induced oocyte death. Oocyte-specific Trp63 knockout mice prevented primordial follicle loss and maintained reproductive function from cyclophosphamide and doxorubicin, indicated by undetectable levels of BAX and cPARP. Here, we demonstrated that TAp63 is fundamental in determining the signaling of oocyte death against DNA damage. This study establishes the role of TAp63 as a target molecule of adjuvant therapies to protect the ovarian reserve from different classes of chemotherapy.


Assuntos
Apoptose , Oócitos , Camundongos , Feminino , Animais , Oócitos/metabolismo , Ciclofosfamida/farmacologia , Ciclofosfamida/metabolismo , Doxorrubicina/farmacologia , Camundongos Knockout , Dano ao DNA
14.
Autoimmunity ; 55(8): 650-660, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35892187

RESUMO

Bletilla striata (Thunb.) Reichb.f., is a traditional Chinese medicine, and the Bletilla striata polysaccharide (BSP) is one of the principal components extracted from Bletilla striata with various biological activities. Previous studies have shown that many natural polysaccharides have significant immunomodulatory activities. However, as a plant polysaccharide, the research of BSP on immunomodulatory activities is limited. In this study, we aim to investigate the immunomodulatory effect of BSP in vivo and further explore its underlying mechanism in vitro. In vivo, a cyclophosphamide (CTX)-induced immunosuppression mice mode was established by intraperitoneal injection of CTX, and the immune-enhancing effect of BSP (25, 50 and 100 mg/kg) on immunosuppressed mice were evaluated. The result indicated that BSP could significantly improve the immune organ index and the content of immunoglobulin, TNF-α and IL-4 in serum. It was also found that BSP could clearly ameliorate the spleen damage induced by CTX. Meanwhile, the result showed that BSP could not only improve the proliferation of splenocytes, but also activate the lactate dehydrogenase (LDH) and acid phosphatase (ACP) in mouse spleen tissue. In vitro, potential mechanism was further revealed in macrophages. The result supported that BSP could activate macrophages with high phagocytic ability, and induce macrophages to secrete cytokines. Finally, it revealed that activation of NF-κB and MAPK signalling pathway should be the underlying mechanism of the immunoenhancment of BSP.


Assuntos
NF-kappa B , Orchidaceae , Fosfatase Ácida/metabolismo , Animais , Ciclofosfamida/metabolismo , Citocinas/metabolismo , Interleucina-4/metabolismo , Lactato Desidrogenases/metabolismo , Camundongos , NF-kappa B/metabolismo , Orchidaceae/metabolismo , Polissacarídeos/metabolismo , Polissacarídeos/farmacologia , Fator de Necrose Tumoral alfa/metabolismo
15.
Stem Cells Transl Med ; 11(6): 659-673, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35648087

RESUMO

Interstitial cystitis (IC) is a bladder syndrome of unclear etiology with no generally accepted treatment. Growing evidence suggest that periostin (POSTN) is an important homeostatic component in the tissue repair and regeneration in adulthood, but its function in urinary bladder regeneration is still unknown. Here we investigate whether POSTN is involved in bladder tissue repair in a cyclophosphamide (CYP)-induced interstitial cystitis model. POSTN is primarily expressed in bladder stroma (detrusor smooth muscle and lamina propria) and upregulated in response to CYP-induced injury. POSTN deficiency resulted in more severe hematuria, aggravated edema of the bladder, and delayed umbrella cell recovery. Besides, less proliferative urothelial cells (labeled by pHH3, Ki67, and EdU) and lower expression of Krt14 (a urothelial stem cell marker) were detected in POSTN-/- mice post CYP exposure, indicating a limited urothelial regeneration. Further investigations revealed that POSTN could induce Wnt4 upregulation and activate AKT signaling, which together activates ß-catenin signaling to drive urothelial stem cell proliferation. In addition, POSTN can promote resident macrophage proliferation and polarization to a pro-regenerative (M2) phenotype, which favors urothelial regeneration. Furthermore, we generated injectable P-GelMA granular hydrogel as a biomaterial carrier to deliver recombinant POSTN into the bladder, which could increase urothelial stem cells number, decrease umbrella cells exfoliation, and hence alleviate hematuria in a CYP-induced interstitial cystitis model. In summary, our findings identify a pivotal role of POSTN in bladder urothelial regeneration and suggest that intravesical biomaterials-assisted POSTN delivery may be an efficacious treatment for interstitial cystitis.


Assuntos
Cistite Intersticial , Cistite , Animais , Proliferação de Células , Ciclofosfamida/efeitos adversos , Ciclofosfamida/metabolismo , Cistite/induzido quimicamente , Cistite/genética , Cistite/metabolismo , Cistite Intersticial/metabolismo , Hematúria/metabolismo , Macrófagos/metabolismo , Camundongos , Bexiga Urinária
16.
J Reprod Dev ; 68(4): 287-294, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35718464

RESUMO

Any abnormal activation of primordial follicles and subsequent depletion can irreversibly diminish the ovarian reserve, which is one of the major chemotherapy-induced adverse effects in young patients with cancer. Herein, we investigated the effects of rapamycin on the activation and development of ovarian follicles to evaluate its fertility-sparing therapeutic value in a cyclophosphamide (CTX)-treated mouse model. Based on ovarian histomorphological changes and follicle counting in 50 SPF female C57BL/6 mice, daily administration of 5 mg/kg rapamycin for 30 days was deemed an ideal dosage and duration for administration in subsequent experiments. Compared with the control group, rapamycin treatment inhibited the activation of quiescent primordial follicles, with no obvious side effects observed. Finally, 48 mice were randomly divided into four groups: control, rapamycin-treated, cyclophosphamide-treated, and rapamycin intervention. Body weight, ovarian histomorphological changes, number of primordial follicles, DDX4/MVH expression, apoptosis of follicular cells, and expression of apoptosis protease-activating factor (APAF)-1, cleaved caspase 3, and caspase 3 were monitored. Co-administration of rapamycin reduced primordial follicle loss and the development of follicular cell apoptosis, thereby rescuing the ovarian reserve after CTX treatment. On analyzing the mTOR signaling pathway, we observed that rapamycin significantly decreased CTX-mediated overactivation of mTOR and its downstream molecules. These findings suggest that rapamycin exhibits potential as an ovarian-protective agent that could maintain the ovarian primordial follicle pool and preserve fertility in young female patients with cancer undergoing chemotherapy.


Assuntos
Reserva Ovariana , Animais , Feminino , Camundongos , Caspase 3/metabolismo , Ciclofosfamida/efeitos adversos , Ciclofosfamida/metabolismo , Camundongos Endogâmicos C57BL , Folículo Ovariano/metabolismo , Reserva Ovariana/fisiologia , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo
17.
Bull Exp Biol Med ; 173(1): 146-150, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35624353

RESUMO

Most drugs are metabolized in the liver, which can lead to their activation or inactivation with a change in the parent compound pharmacology, as well as liver damage by active metabolites. Preclinical animal studies of drug safety do not always predict its effect on humans due to species specificity. Thus, for the rapid drug screening, and especially prodrugs, an in vitro system is required that allows predicting xenobiotic cytotoxicity with consideration of their metabolism in liver cells. The use of a microfluidic chip (BioClinicum) made it possible to cultivate a 2D culture of human HaCaT keratinocytes with spheroids of human hepatoma HepaRG cells. After incubation in a specially selected universal serum-free medium containing 3.8 mM cyclophosphamide, pronounced death of HaCaT cells was observed in comparison with culturing in the absence of liver cells.


Assuntos
Pró-Fármacos , Animais , Ciclofosfamida/metabolismo , Ciclofosfamida/toxicidade , Hepatócitos , Fígado/metabolismo , Microfluídica , Pró-Fármacos/metabolismo , Pró-Fármacos/farmacologia
18.
J Exp Clin Cancer Res ; 41(1): 71, 2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35189958

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is characterized by clusters of cancer cells surrounded by a dense desmoplastic stroma. However, little is known about stromal cell heterogeneity in the pancreatic tumor microenvironment. METHODS: We conducted circRNA profiling in primary fibroblasts by high-throughput sequencing and detected circCUL2 levels in PDAC tissues by qRT-PCR. We subsequently investigated the effect of circCUL2 on inflammatory cancer-associated fibroblast (iCAF) activation, heterogeneity and protumor activity by ELISA, flow cytometry, colony formation and transwell assays in vitro and by xenograft models in vivo. The regulatory effect of circCUL2 on miR-203a-3p/MyD88/IL6 was examined by RNA pulldown, FISH, and luciferase reporter assays. RESULTS: We identified that circCUL2 was specifically expressed in cancer-associated fibroblasts (CAFs) but not in cancer cells. Moreover, the enrichment of circCUL2 in tumor tissues was significantly correlated with the poor prognosis of PDAC patients. Upregulation of circCUL2 expression in normal fibroblasts (NFs) induced the iCAF phenotype, and then iCAFs promoted PDAC progression through IL6 secretion in vitro. Furthermore, circCUL2-transduced NFs promoted tumorigenesis and metastasis of PDAC cells in vivo, which was blocked by an anti-IL6 antibody. Mechanistically, circCUL2 functioned as a ceRNA and modulated the miR-203a-3p/MyD88/NF-κB/IL6 axis, thereby further activating the STAT3 signaling pathway in pancreatic cancer cells to induce PDAC progression. CONCLUSIONS: We showed that the circCUL2/miR-203a-5p/MyD88/NF-κB/IL6 axis contributes to the induction of iCAFs and established a distinct fibroblast niche for PDAC progression, which could help the development of strategies that selectively target tumor-promoting CAFs in PDAC.


Assuntos
Adenocarcinoma/genética , Protocolos de Quimioterapia Combinada Antineoplásica/metabolismo , Biomarcadores Tumorais/metabolismo , Carcinoma Ductal Pancreático/genética , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , RNA Circular/genética , Adenocarcinoma/patologia , Animais , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Proliferação de Células , Ciclofosfamida/metabolismo , Doxorrubicina/metabolismo , Feminino , Fluoruracila/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Fenótipo , Prognóstico , Transdução de Sinais , Transfecção , Microambiente Tumoral
19.
Arch Toxicol ; 96(2): 653-671, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35088106

RESUMO

Cyclophosphamide is a widely used anticancer and immunosuppressive prodrug that unfortunately causes severe adverse effects, including cardiotoxicity. Although the exact cardiotoxic mechanisms are not completely understood, a link between cyclophosphamide's pharmacologically active metabolites, namely 4-hydroxycyclophosphamide and acrolein, and the toxicity observed after the administration of high doses of the prodrug is likely. Therefore, the objective of this study is to shed light on the cardiotoxic mechanisms of cyclophosphamide and its main biotransformation products, through classic and metabolomics studies. Human cardiac proliferative and differentiated AC16 cells were exposed to several concentrations of the three compounds, determining their basic cytotoxic profile and preparing the next study, using subtoxic and toxic concentrations for morphological and biochemical studies. Finally, metabolomics studies were applied to cardiac cells exposed to subtoxic concentrations of the aforementioned compounds to determine early markers of damage. The cytotoxicity, morphological and biochemical assays showed that 4-hydroxycyclophosphamide and acrolein induced marked cardiotoxicity at µM concentrations (lower than 5 µM), being significantly lower than the ones observed for cyclophosphamide (higher than 2500 µM). Acrolein led to increased levels of ATP and total glutathione on proliferative cells at 25 µM, while no meaningful changes were observed in differentiated cells. Higher levels of carbohydrates and decreased levels of fatty acids and monoacylglycerols indicated a metabolic cardiac shift after exposure to cyclophosphamide's metabolites, as well as a compromise of precursor amino acids used in the synthesis of glutathione, seen in proliferative cells' metabolome. Overall, differences in cytotoxic mechanisms were observed for the two different cellular states used and for the three molecules, which should be taken into consideration in the study of cyclophosphamide cardiotoxic mechanisms.


Assuntos
Antineoplásicos/toxicidade , Cardiotoxicidade/etiologia , Ciclofosfamida/toxicidade , Miócitos Cardíacos/efeitos dos fármacos , Acroleína/toxicidade , Antineoplásicos/administração & dosagem , Antineoplásicos/metabolismo , Cardiotoxicidade/fisiopatologia , Linhagem Celular , Ciclofosfamida/administração & dosagem , Ciclofosfamida/análogos & derivados , Ciclofosfamida/metabolismo , Relação Dose-Resposta a Droga , Humanos , Imunossupressores/administração & dosagem , Imunossupressores/metabolismo , Imunossupressores/toxicidade , Metabolômica , Miócitos Cardíacos/patologia
20.
Environ Sci Pollut Res Int ; 29(20): 30383-30393, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34997497

RESUMO

The current study aimed to investigate the potential ameliorative effects of pyrroloquinoline quinone (PQQ) on cyclophosphamide (CTX)-induced liver injury in mice. The liver injury model was established by injecting mice with CTX (80 mg/kg/day). Liver function indices, antioxidant enzyme activities, and inflammatory cytokines were evaluated. In addition, protein expression levels of the nuclear factor E2-related factor 2 (Nrf2) and nuclear factor kappa-B (NF-κB) pathways in the liver tissues were determined using western blot. The results indicated that PQQ decreased the serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), and the malondialdehyde (MDA), interleukin (IL)-1ß, IL-6, tumor necrosis factor-α (TNF-α) levels in the liver tissues. Moreover, PQQ enhanced the activities of oxidative stress markers to alleviate CTX induced oxidative stress. Furthermore, the expression levels of heme oxygenase-1 (HO-1), glutamate-cysteine ligase modifier subunit (GCLM), and NAD(P)H quinone oxidoreductase 1 (NQO1) were significantly increased, and the expression levels of NF-κB p50, NF-κB p65, and inhibitor of NF-κB kinase alpha (IKKα) were significantly decreased after PQQ administration, suggesting that PQQ alleviated CTX-induced liver injury via activating the Nrf2-mediated antioxidant response pathway, and inhibiting the NF-κB-mediated inflammation pathway. Therefore, PQQ can be potentially used as a dietary supplement or functional foods for alleviating the CTX-induced liver injury.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Fator 2 Relacionado a NF-E2 , Animais , Antioxidantes/metabolismo , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Crônica Induzida por Substâncias e Drogas/patologia , Ciclofosfamida/metabolismo , Ciclofosfamida/toxicidade , Fígado , Camundongos , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo , Cofator PQQ/metabolismo , Cofator PQQ/farmacologia , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...